# Fabrication of bioglass infiltrated Al<sub>2</sub>O<sub>3</sub>–(m-ZrO<sub>2</sub>) composites

Ho-Yeon Song · Swapan Kumar Sarkar · Min Sung Kim · Young Ki Min · Yang Hun Mo · Byong-Taek Lee

Received: 18 February 2008/Accepted: 18 August 2008/Published online: 3 September 2008 © Springer Science+Business Media, LLC 2008

Abstract Using 80 vol.% of poly methyl methacrylate (PMMA) as a pore-forming agent to obtain interconnected porous bodies, porous  $Al_2O_3$ –(m-ZrO<sub>2</sub>) bodies were successfully fabricated. The pores were about 200 µm in diameter and were homogeneously dispersed in the  $Al_2O_3$ –25 vol.% (m-ZrO<sub>2</sub>) matrix. To obtain  $Al_2O_3$ –(m-ZrO<sub>2</sub>)/bioglass composites, the molten bioglass was infiltrated into porous  $Al_2O_3$ –(m-ZrO<sub>2</sub>) bodies at 1400°C. The material properties of the  $Al_2O_3$ –(m-ZrO<sub>2</sub>)/bioglass composites, such as relative density, hardness, compressive strength, fracture toughness and elastic modulus were investigated.

## 1 Introduction

In search of suitable replacement or supporting material for human hard tissue, researchers have been investigating for decades on different materials. Extremely inert material in the physiological condition like the  $Al_2O_3$  and  $ZrO_2$ ceramics has gained attention for a range of applications [1, 2]. But lack of bioactivity and inability to conform to the material properties of living hard tissue, specially the elastic modulus (too high) and fracture toughness (low enough) has lead researchers to design new materials that can exhibit superior biological response and at the same time have good mechanical properties [3]. Calcium phosphate based materials, that resemble the material of the bone itself was a promising candidate [4]. Recently bioactive glass materials,

School of Medicine, Soonchunhyang University, 366-1, Ssangyoung-dong, Cheonan, Chungnam 330-090, South Korea e-mail: lbt@sch.ac.kr with a better biological response than the calcium phosphate based materials, have been investigated for this purpose [5, 6]. Bioactive glasses have been investigated and found to be a promising alternative as materials to repair or replace damaged parts of human bones and teeth due to their good biocompatibility and excellent bioactivity [7-9]. Several kinds of bioglasses were reported among which bioglass 58S has shown good bonding to human bone as well as to soft tissue and resorbed inside body relatively fast, providing a very good extent of bioactivity [10, 11]. However, the biocompatibility and bone bonding are not all of the requirements for bone repair and replacement materials. Bioglass showed low mechanical properties, especially the fracture toughness [12, 13]. Thus, there is a strong impetus to improve the mechanical properties of bioactive ceramics so that they can be used in load-bearing hard tissue.

There are some reports attempting to improve the mechanical properties of bioglass using HAp nanofibres [14], metal fibre [15] and a Fe-Cr alloy [16]. However, they showed limitations in the improvement of the mechanical properties or degrade the excellent biocompatibility of the bioglass. As already said the Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub> ceramics have received a lot of attentions to use for implants such as prostheses, dental materials and femoral head due to their good biocompatibility and corrosion resistance, excellent chemical stability, and outstanding mechanical properties [17–19]. Thus, they can be considered as suitable reinforcement materials for bioglass, especially in the purpose where high corrosion resistance is required. The combination of Al<sub>2</sub>O<sub>3</sub> and m-ZrO<sub>2</sub> is considered for composites due to the fact that this composite can introduce some interesting features like microcracks at grain boundary, residual stress development, etc., which can modify the behaviour of the material positively in terms of mechanical performance [17].

H.-Y. Song  $\cdot$  S. K. Sarkar  $\cdot$  M. S. Kim  $\cdot$  Y. K. Min  $\cdot$ 

Y. H. Mo  $\cdot$  B.-T. Lee ( $\boxtimes$ )

The present work described a new method to fabricate  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites using melt infiltration of bioglass into porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) bodies. Porous composites were fabricated first using replica method by driving away PMMA micro-sphere within the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) matrix and creating interconnected spherical pores. Detailed microstructure and mechanical properties of  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites were investigated.

# 2 Experimental procedure

#### 2.1 Material processing

As starting materials, Al<sub>2</sub>O<sub>3</sub> (300 nm, Sumitomo, Japan), monoclinic Zirconia (m-ZrO<sub>2</sub>) (80 nm, Tosho, Japan), bioglass 58S (Shofu Inc., Kyoto, Japan) and poly methyl methacrylate (PMMA) (200 µm, LG chemical company, Korea) as pore-forming agent powders were used. The processing of the composites were done in two steps; initially making the Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>) porous body with interconnected pore and then by subsequent bioglass infiltration into the porous body. To make porous Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>) bodies, first, 75 vol.% Al<sub>2</sub>O<sub>3</sub> and 25 vol.% ZrO<sub>2</sub> powders were mixed for 24 h by wet ball-milling using Al<sub>2</sub>O<sub>3</sub> balls. After drying, the mixed ceramic powders and PMMA powder were mixed for 24 h by dry ball-milling using the same Al<sub>2</sub>O<sub>3</sub> balls. The composition of ceramic powders and PMMA was 20/80 vol.% to ensure sufficient porosity as well as interconnectivity of the pores. The mixed powders were then compacted to form pellets (diameter 1.3 cm) by uni-axial press. The green pellets were burnt out in an air atmosphere at 1000°C to drive out the PMMA and form the intended pores. Finally, the burnout samples were sintered at 1500°C in an air atmosphere to obtain porous Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>) bodies.

To infiltrate bioglass into the porous composites, it was kept in a mould with one end open. Subsequently, sufficient amount of bioglass powder was put on the top of the porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) bodies and were put into the furnace and was heated to 1400°C. To ensure that the molten bioglass was completely infiltrated into the porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) bodies the dwelling time at this temperature was set to 60 min. The bioglass on the outside of the samples was removed by polishing to take  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites.

# 2.2 Mechanical properties evaluation

The relative density of  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites was measured by the Archimedes method. The pore size and microstructure of the porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) bodies and Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>)/bioglass composites were investigated by scanning electron microscopy (SEM, JSM-635F, JEOL). To identify the crystal structure and phases, an X-ray diffractometer (XRD, D/MAX-250, Rigaku, Japan) was used. The hardness and fracture toughness were measured using a Vickers hardness tester (Hv-112, Akashi, Japan) by indentation with a load of 0.5 kg. The specimens with a dimension of  $\Phi 12 \times 4 \text{ mm}^3$  were used for a compression test using a universal testing machine (UnitechTM, R&B, Korea) with a crosshead speed of 0.5 mm/min in ambient conditions. The stress-strain curve obtained was used to determine the mechanical properties. The compressive strength and elastic modulus were determined from the maximum load recorded and from the slope at the initial stage, respectively. Five specimens were tested for each condition.

# 3 Results and discussion

Figure 1 showed TG & DTA profiles of 58S bioglass. In the TG profile, the weight percentage of 58S bioglass decreased as the temperature increased to 430°C. The amount of 58S bioglass decreased about 0.26 wt.%, which was mainly due to the desorption of physically and chemically adhered moisture or gaseous materials. From the DTA profile, it was evident that an endothermic reaction had occurred at around 771.8–842.5°C. An associated weight loss, though negligible, was also observed in the same temperature range. This indicates a change in the chemical composition in the glassial phase of the 58S bioglass. The nominal composition of the 58S bioglass powder in mol% was 60% SiO<sub>2</sub>, 36% CaO and 4% P<sub>2</sub>O<sub>5</sub>, as shown in Table 1.

Figure 2 showed SEM micrographs of (a) porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) composites and (b)  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/



Fig. 1 TG & DTA profiles of 58S bioglass

Table 1 The nominal composition of the 58S bioglass powder in  $\mathrm{mol}\%$ 

| SiO <sub>2</sub> | CaO | P <sub>2</sub> O |
|------------------|-----|------------------|
| 60%              | 36% | 4%               |

bioglass composites. Figure 2a revealed that the PMMA, which was used as a pore-forming agent, was completely removed after the burning-out and sintering processes. The impression of the PMMA with in the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) matrix was intact and form spherical shaped pores. The pores were around 200 µm in diameter and were homogeneously dispersed in the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) matrix. The close proximity of the PMMA spheres with each other was the single most important factor for the interconnectivity of the pores, which was ensured by adding as high as 80 vol. % of PMMA in the green compact. But the same fact also contributed to the very thin frame region of the Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>) matrix and thereby degrading the material properties. From the Fig. 2a both the interconnected porosity and the thin frame were evident. Interconnectivity of the pores is an important parameter for the sound infiltration process. It is also important because the interconnectivity of the pores will finally dictate the proliferation and in-growth of the bone cells inside the composites. Figure 2b showed SEM image of polished surface of the composites after the infiltration of bioglass. The bioglass was completely infiltrated into the porous Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>) composites which were interconnected to each other. However, a few residual pores were observed completely devoid of bioglass, which was due to the lack of interconnectivity and being stand alone pores.

Figure 3 showed XRD profiles of (a) raw bioglass, (b) porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) composites and (c)  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites. After infiltration of bioglass into porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) composites, a  $Ca_7Si_2P_2O_{16}$  peak as a new phase, with sharp, strong intensity was detected. The  $Ca_2SiO_4$  and  $Ca_3SiO_5$  phases, which appeared

 $\label{eq:ca2SiO4} \ensuremath{\mathbb{I}} \operatorname{Ca_2SiO_4} \ensuremath{\mathbb{I}} \operatorname{Ca_3SiO_5} \ensuremath{\mathbb{I}} \operatorname{Ca_3(PO_4)_2} \ensuremath{\mathbb{O}} \operatorname{Ca_5(PO_4)_2SiO_4} \ensuremath{\mathbb{I}} \operatorname{Al_2O_3} \ensuremath{\bigstar} \operatorname{m-ZrO_2} \ensuremath{\mathbb{O}} \operatorname{Ca_7Si_2P_2O_{16}} \e$ 



Fig. 3 XRD profiles of (a) raw bioglass, (b) porous  $Al_2O_3$ -(m-ZrO<sub>2</sub>) composites and (c)  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites

in the raw bioglass (a), were not observed. The formation of the  $Ca_7Si_2P_2O_{16}$  phase could be explained due to the reaction of  $Ca_2SiO_4$  and  $Ca_3SiO_5$  with  $Ca_3(PO_4)_2$  phases with the following equation:

$$\begin{aligned} \text{Ca}_2\text{SiO}_4 + \text{Ca}_3\text{SiO}_5 + \text{Ca}_3\text{(PO}_4)_2 &= \text{Ca}_7\text{Si}_2\text{P}_2\text{O}_{16} \\ &+ \text{CaO} \end{aligned}$$

Figure 4 shows SEM fracture surfaces of  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites. In Fig. 4a, the fracture surface showed a clear bimodal fracture behaviour with a rough surface with the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) frame indicating an intergranular fracture mode and with a flat and smooth fracture surface in the bioglass phase indicating a transgranular fracture mode. The intergranula fracture mode of the frame region increased the fracture toughness of the composites. From Fig. 4b, the enlarged image showed that there were a very low presence of interfacial cracks and debonding of the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) matrix material and the infiltrated bioglass phase. This indicated



Fig. 2 SEM micrographs of (a) porous Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>) composites and (b) Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>)/bioglass composites

Fig. 4 SEM fracture surfaces of  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites (a) low magnification, (b) enlarged image and (c) enlarged image of interface between  $Al_2O_3$ -(m-ZrO<sub>2</sub>) and bioglass



that the bioglass was well infiltrated inside the porous body and the bonding between the ceramics and bioglass was strong. This can be observed more clearly in Fig. 4c. This observation indicated that their interfaces existed with strong bonding. However, some micro-cracks were found at the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) pore frame as indicated by arrowheads in Fig. 4b. This was because, with a very high content (80%) of porosity, the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) porous composites before infiltration was mechanically not so strong as expected as it underwent a significant extent of shrinkage. However, this contributed a limited drawback to the composite's desired mechanical performance.

Figure 5 shows the enlarged SEM fracture surfaces of  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites. In Fig. 5a, high magnification of the  $Al_2O_3$ -(m-ZrO<sub>2</sub>) matrix, the microstructure was observed homogeneous with the same grain size of <0.7 µm in diameter. The main fracture mode was an intergranular type, although a few flat regions appeared due to the transgranular fracture. From previous work, improved fracture and crack propagation behavior in this system was reported [20]. Due to the dispersion of m-ZrO<sub>2</sub> grains in the  $Al_2O_3$  matrix, the interfaces between  $Al_2O_3$ 

and  $m-ZrO_2$  grains may be more interacting with crack propagation or fracture surface generation because of the existence of micro-cracks during the formation of twins. Figure 5b, the high magnification image of the bioglass area, showed the typical flat surface of the bioglass.

The material properties of  $Al_2O_3$ -(m-ZrO<sub>2</sub>)/bioglass composites were shown in Table 2. The fracture toughness of the composites was measured by the indentation method using Evan's equation, which is:

$$K_{\rm IC} = 0.16 Ha^{1/2} (c/a)^{-3/2}$$

where *H* is the Vickers hardness, *a* is half of the indentation diagonal, and *c* is half of the crack length from the indentation center. The values of relative density, hardness, compressive strength, fracture toughness and elastic modulus of the composites, were 96.6%, 767 Hv, 375 MPa, 2.35 MPa m<sup>1/2</sup> and 86.8 GPa, respectively. In general, the maximum fracture toughness of the bioglass reported in the literature varied from 0.96 to 1 MPa m<sup>1/2</sup> [12, 21]. Thus, the high values of fracture toughness and elastic modulus attained in the present work were encouraging compared to those of dense bioglass [21].



Table 2 The material properties of Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>)/bioglass composites and dense bioglass

|                     | Relative<br>density (%) | Hardness<br>(Hv) | Compressive<br>strength (MPa) | Fracture toughness (MPa m <sup>1/2</sup> ) | Elastic<br>modulus (GPa) |
|---------------------|-------------------------|------------------|-------------------------------|--------------------------------------------|--------------------------|
| Composites          | 96.6                    | 767 ± 1          | 375 ± 1                       | $2.35 \pm 0.1$                             | $86.8\pm0.1$             |
| Dense bioglass [15] | -                       | -                | ~500                          | 0.5–1                                      | 35                       |

of Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>)/bioglass composites (**a**) high magnification of pore frame and (**b**) high magnification of bioglass area

Fig. 5 SEM fracture surfaces

#### 4 Conclusions

Porous Al<sub>2</sub>O<sub>3</sub>/(25 vol.%) m-ZrO<sub>2</sub> bodies were successfully fabricated using 80 vol.% of PMMA as a pore-forming agent. The pores of porous bodies about 200 µm in diameter were homogeneously dispersed in the Al<sub>2</sub>O<sub>3</sub>/m-ZrO<sub>2</sub> matrix and showed good interconnection between them. Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>)/bioglass composites were fabricated by the melt infiltration process using porous Al<sub>2</sub>O<sub>3</sub>/m-ZrO<sub>2</sub> bodies and molten bioglass. Most Al<sub>2</sub>O<sub>3</sub>/m-ZrO<sub>2</sub> pores were fully infiltrated by the bioglass. The values of fracture toughness and elastic modulus of the Al<sub>2</sub>O<sub>3</sub>-(m-ZrO<sub>2</sub>)/ bioglass composites were 2.35 MPa m<sup>1/2</sup> and 86.8 GPa, respectively. This is a significant improvement compared to previous results reported in the literature.

Acknowledgement This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2007-000-21038-0).

#### References

- 1. H. Fischer, C. Niedhart, N. Kaltenborn, A. Prange, R. Marx, F.U. Niethard et al., Biomaterials **26**, 6151 (2005)
- G. Piconi, C. Maccauro, Biomaterials 20, 1 (1999). doi:10.1016/ S0142-9612(98)00010-6
- Y.M. Kong, C.J. Bae, S.H. Lee, H.W. Kim, H.E. Kim, Biomaterials 26, 509 (2005). doi:10.1016/j.biomaterials.2004.02.061
- S.H. Rhee, Y. Suetsugu, J. Tanaka, Biomaterials 22, 2843 (2001). doi:10.1016/S0142-9612(01)00028-X

- 5. W. Xia, J. Chang, J. Non-Cryst. Solids 354(12), 1338 (2008)
- F.H. Lin, Y.Y. Huang, M.H. Hon, S.C. Wu, J. Biomed. Eng. 13(4), 328 (1991)
- H.A. ElBatal, M.A. Azooz, E.M.A. Khalil, A.S. Monem, Y.M. Hamdy, Mater. Chem. Phys. 80, 599. doi:10.1016/S0254-0584 (03)00082-8
- Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials 27, 2414 (2006). doi:10.1016/j.biomaterials.2005.11.025
- M. Bosetti, M. Cannas, Biomaterials 26, 3873 (2005). doi: 10.1016/j.biomaterials.2004.09.059
- I.A. Silver, J. Deas, M. Erecinska, Biomaterials 22, 175 (2001). doi:10.1016/S0142-9612(00)00173-3
- W. Xia, J. Chang, J. Non-Cryst. Solids 354, 1338 (2008). doi: 10.1016/j.jnoncrysol.2006.10.084
- G. Goller, H. Demirkiran, F.N. Oktar, E. Demirkesen, Ceram. Int. 29, 721 (2003). doi:10.1016/S0272-8842(02)00223-7
- M. Amaral, M.A. Lopes, R.F. Silva, J.D. Santos, Biomaterials 23, 857 (2002). doi:10.1016/S0142-9612(01)00194-6
- H.R.R. Ramay, M. Zhang, Biomaterials 25, 5171 (2004). doi: 10.1016/j.biomaterials.2003.12.023
- H.B. Guo, X. Miao, Y. Chen, P. Cheang, K.A. Khor, Mater. Lett. 58, 304 (2004). doi:10.1016/S0167-577X(03)00474-9
- G.D. With, A.J. Corhijn, J. Mater. Sci. 24, 3411 (1998). doi: 10.1007/BF01139073
- B.T. Lee, S.K. Sarkar, H.Y. Song, J. Eur. Ceram. Soc. 28, 229 (2008). doi:10.1016/j.jeurceramsoc.2007.05.010
- B.T. Lee, C.W. Lee, M.H. Youn, H.Y. Song, Mater. Sci. Eng. A 458, 11 (2007). doi:10.1016/j.msea.2006.11.155
- B.T. Lee, D.V. Quang, H.Y. Song, J. Korean Ceram. Soc. 44, 291 (2007)
- J.K. Han, F. Saito, B.T. Lee, Mater. Lett. 58, 2181 (2004). doi: 10.1016/j.matlet.2004.01.023
- K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413 (2006). doi:10.1016/j.biomaterials.2006.01.039